Topic Modeling of Public Discourse on Electric Vehicles in Indonesia Using BERTopic

Authors

  • Muhammad Rizal IPB University Author
  • Cici Suhaeni IPB University Author

DOI:

https://doi.org/10.65049/b44ktr94

Keywords:

Electric vehicles, Topic Modeling, BERTopic

Abstract

The global shift toward sustainable transportation has increased public attention to electric vehicles (EVs) as an alternative to conventional mobility. This transition also supports the United Nations’ Sustainable Development Goals (SDGs), particularly those related to affordable clean energy and climate action. This study examines how Indonesian users discuss EVs on X (formerly Twitter) by applying BERTopic, an embedding-based topic modeling framework that leverages multilingual sentence embeddings to identify latent themes in public discourse. The analysis reveals that online conversations are dominated by discussions of practical usage, affordability, technological readiness, and brand awareness, while environmental concerns appear less prominent. These insights contribute to a deeper understanding of public perceptions of electric mobility and highlight the social and economic factors influencing EV acceptance in Indonesia

Downloads

Download data is not yet available.

References

Alanazi, F. (2023). Electric Vehicles: Benefits Challenges and Potential Solutions. Journal of Applied Scienc, 13, 1–23.

Arefin, A. A., Meraj, S. T., Lipu, M. S. H., Rahman, M. S., Rahman, T., Hasan, K., Sarker, M. R., & Muttaqi, K. M. (2025). Societal, environmental, and economic impacts of electric vehicles towards achieving sustainable development goals. Results in Engineering, 27(September). https://doi.org/10.1016/j.rineng.2025.107060

Aryani, D., Lucia Kharisma, I., Sujjada, A., & Kamdan, K. (2024). Topic Modeling of the 2024 Election Using the BERTopic Method on Detik.com News Articles. Inform : Jurnal Ilmiah Bidang Teknologi Informasi Dan Komunikasi, 9(2), 171–180. https://doi.org/10.25139/inform.v9i2.8429

Asnawi, M. F., Hanafi, M., Kurniawan, N. F., Suwondo, A., Nasrullah, A., & Setyawan, C. (2024). Topic Modelling Analysis on Indonesian News Using BERT Topic Model. 2024 6th International Conference on Cybernetics and Intelligent System (ICORIS), 1–6. https://doi.org/10.1109/ICORIS63540.2024.10903779

Grootendorst, M. (2022). BERTopic: Neural topic modeling with a class-based TF-IDF procedure. http://arxiv.org/abs/2203.05794

Özkara, Y., Bilişli, Y., Yildirim, F. S., Kayan, F., Başdeğirmen, A., Kayakuş, M., & Yiğit Açıkgöz, F. (2025). Analysing Social Media Discourse on Electric Vehicles with Machine Learning. Applied Sciences (Switzerland), 15(8), 1–20. https://doi.org/10.3390/app15084395

Salsabila, H., Habibi, R., & Harani, N. H. (2023). Social Media-Based Sentiment Analysis: Electric Vehicle Usage in Indonesia. Indonesian Journal of Computer Science, 12(3), 1132–1146. https://doi.org/doi.org/10.33022/ijcs.v12i3.3250

Simanjuntak, K. A., Koyimatu, M., & Ervanisari, Y. P. (2024). Analisis Perubahan Opini Publik Terhadap Kendaraan Listrik di Indonesia Melalui Komentar YouTube: Pendekatan Topic Modeling BERTopic. Jurnal Inovasi Kewirausahaan, 1(3), 1–9.

Siregar, A. M., Faisal, S., Fauzi, A., Indra, J., Masruriyah, A. F. N., & Pratama, A. R. (2024). Model machine learning for sentiment analysis of the presence of electric vehicle in Indonesia. BIS Information Technology and Computer Science, 1, V124022. https://doi.org/10.31603/bistycs.140

Suhaeni, C., Nissa, L., Mualifah, A., & Wijayanto, H. (2025). LDA Topic Modeling Analysis of Public Discourse on Indonesia’s Free Nutritious Meals Program (MBG). International Journal on Informatics for Development, 14(1), 587–600. https://doi.org/10.14421/ijid.2025.5211

Tamzila, A. S., Sulistya, A., & Lidiawaty, B. R. (2025). A Comparative Evaluation of LDA and BERTopic for Topic Modeling of Traffic Complaints in Short Social Media Texts. 2025 International Electronics Symposium (IES), 567–572. https://doi.org/10.1109/ies67184.2025.11161719

Tolani, K., Manohar, S., & Rao, S. (2025). Measuring sustainable mobility of electric vehicles: determining critical factors with policy mix support for developing economies and user convenience. In Journal of Innovation and Entrepreneurship (Vol. 14, Issue 1). https://doi.org/10.1186/s13731-025-00560-2

United Nations. (2015). Arsenic and the 2030 Agenda for sustainable development. In Transforming our world: The 2030 Agenda for Sustainable Development.

Downloads

Published

2025-11-28

How to Cite

Topic Modeling of Public Discourse on Electric Vehicles in Indonesia Using BERTopic. (2025). COMPETENTIE : Journal International Sustainable Research, 2(2), 23-28. https://doi.org/10.65049/b44ktr94

Most read articles by the same author(s)

1 2 3 > >>